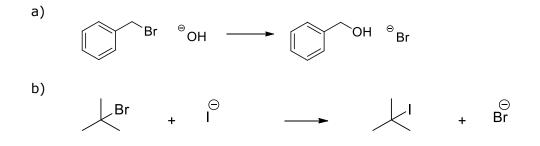
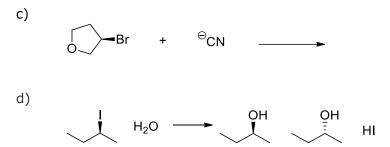

8A. Identify halides and carbocations as being 1°, 2°, or 3°

8A.1 Classify the following halides and carbocations as 1°, 2°, or 3°.


8A.2 Circle the most stable cation in each set.



8A.3 Why does stability of carbocations increase with substitution?

8B. Draw the mechanism of $S_N 2$ and $S_N 1$ reactions including stereochemistry.

8B.1 Draw a mechanism for the following reactions.

8C. Predict how reaction conditions (substrate, nucleophile, leaving group, solvent) effect the rate of $S_N 1$ and $S_N 2$ reactions.

OCSL: 9.1 - 9.35

8C.1 Circle the faster substitution reaction among the following pairs. If the rate is not affected, circle both.

8C.2 Circle the best choice for each statement.

~	circle the best choice for each statement	•		i i
	Best Substrate for $S_N 1$	CI	CI	CI
	Best nucleophile in DMSO	$CH_3CO_2^-$	CH ₃ CH ₂ O-	CH ₃ CH ₂ OH
	Best solvent for $S_N 2$	CH₃CN	CH₃OH	CH ₃ (CH ₂) ₃ CH ₃
	Best leaving group	I-	F-	OH-
	Best Nucleophile in CH ₃ CN	I-	F-	OH-
	Best nucleophile in H ₂ O	I-	CI-	F-
	Best substrate for $S_N 2$		і Дерегі	CH ₃ CI
	Best solvent for $S_N 1$	сн₃он >=о		CH ₃ CN

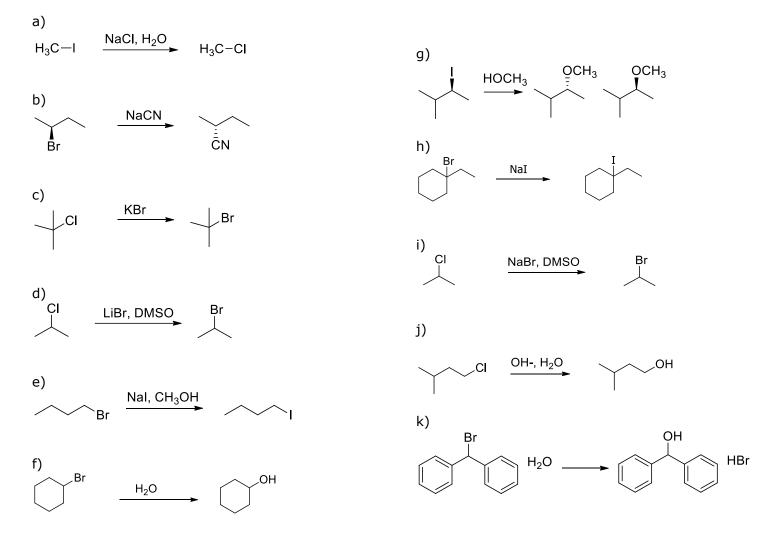
8C.3 What would happen to the rate of the reaction below under the following conditions? (increase, decrease, same)

		Кон	
a) Increasing the concent	ration of water	_	
b) decreasing the concen	tration of halide		
c) changing the leaving g	roup to bromine		
d) starting with 2-iodo pr	opane		
8C.4 What would happen to the decrease, same)	ne rate of the reaction be	elow under the following condit	ions? (increase,

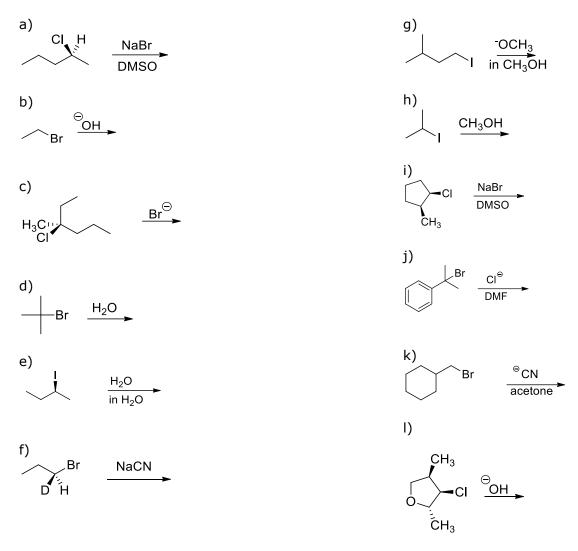
	Br	NaOH		OH	NaBr
a)	the solvent is changed fr	o DMSO			

b) the leaving group is changed from bromine to chlorine _____

c) the nucleophile is changed to H₂O _____


8C.5 The reaction of 1-chlorobutane with $CH_3CO_2^-$ in CH_3CO_2H to give butyl acetate is greatly accelerated by adding a small quantity of iodide ion. Explain.

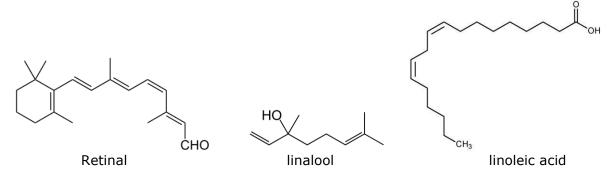
8D. Determine if a set of conditions is likely to be $S_N 1$ or $S_N 2$ and predict the products including stereochemistry.

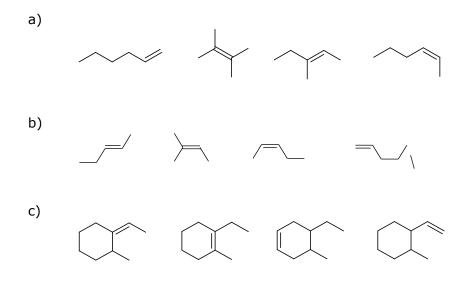

8D.1 Determine if the following would be associated with an S_N1 or S_N2 reaction.

a) One step	f) Best in protic solvents
b) Favors strong nucleophiles	g) Two steps
c) racemizes stereochemistry	h) Inverts stereochemistry
d) 2 nd order kinetics	i) 1 st order kinetics
e) Has a carbocation intermediate	j) Best in aprotic solvents

8D.2 Indicate if the following is likely to go through a $S_{\rm N}1$ or $S_{\rm N}2$ mechanism.

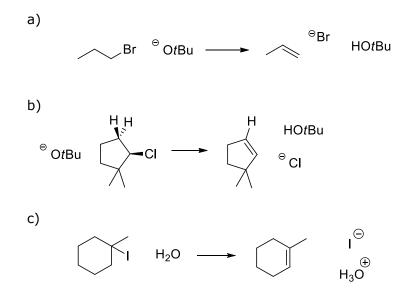
8D.3 Indicate if the following reactions proceed through an S_N1 or S_N2 mechanism. Draw the substitution product(s); show stereochemistry if relevant.


8D.4 Propose a way to make the following product. (note stereochemistry)

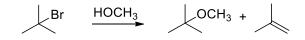

8E. Identify alkenes as being mono, di, tri or tetra substituted, cis or trans, and predict the trend in stability

<u>OCSL</u>: 10.1 - 10.11

8E.1 Identify the alkenes in the following natural products as being mono, di, tri or tetra substituted. Identify di-substituted as cis or trans.

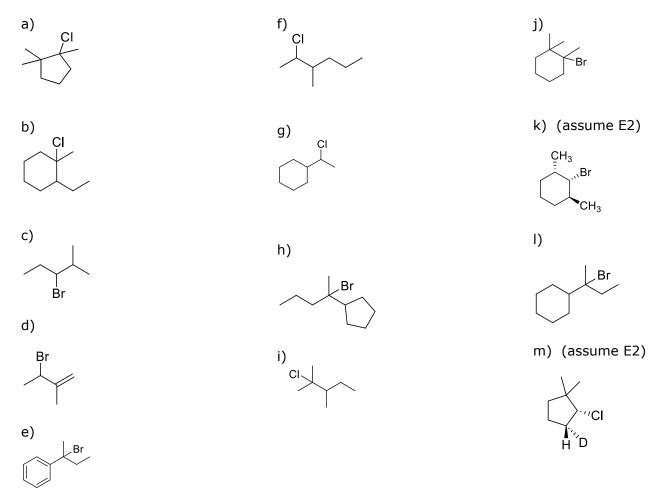


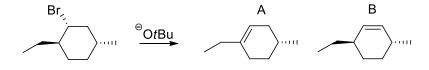
8E.2 Rank the following groups of alkenes from least stable (4) to most stable (1).



8F. Draw the mechanism of the E2 & E1 reactions.

8F.1 Draw the mechanism of the following reactions.

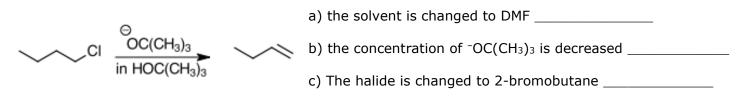

8F.2 The molecule below reacts through an SN1/E1 pathway in methanol. Draw the mechanism for each pathway.


.

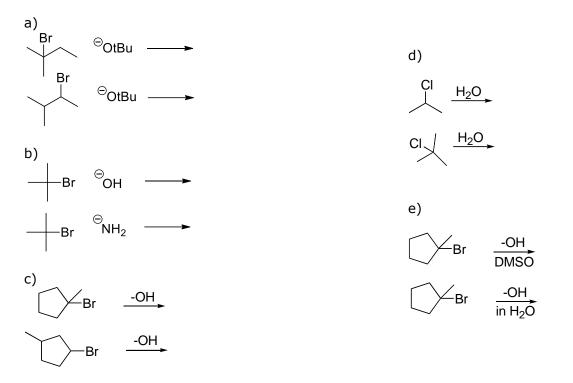
8G. Predict all possible elimination products of an alkyl halide and identify the major product

8G.1 Draw all possible elimination products for the following molecules and circle the major product.

8G.2 In the reaction below, **<u>B</u>** is the major product. Explain.



8G.3 What alkyl halides would you start with to get each of the following as the major elimination product?

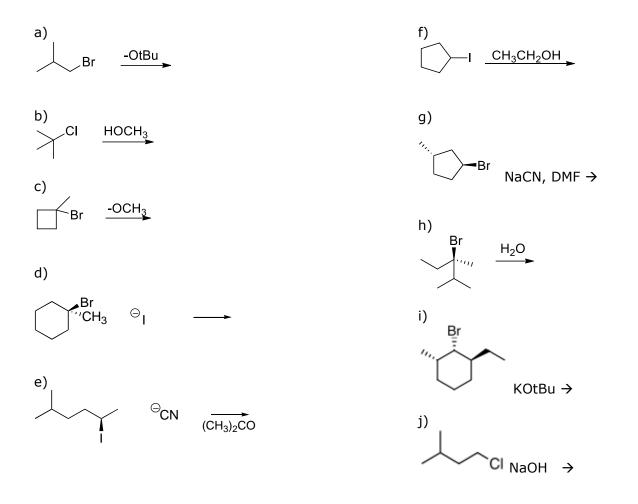


8H. Predict how reaction conditions (substrate, base, leaving group, solvent) effect the rate of E2

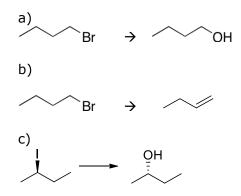
8H.1 For the following E2 reaction, what happens to the rate with each of the following changes? (increase, decrease, same)

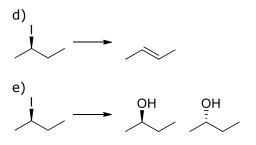
8H.2 Circle the faster elimination reaction. If the rate is not affected by the change, <u>circle both</u>.

8H.3 Circle **ALL** that apply to the given statement.

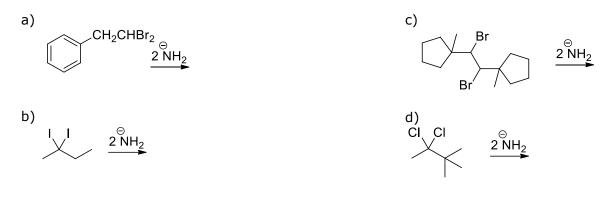

a) Works best with bulky bases:	$S_{N}1$	S _N 2	E1	E2			
b) Requires antiperiplanar geometry:	$S_N 1$	S _N 2	E1	E2			
c) The mechanism involves a carbocation intermediate:				$S_N 1$	S _N 2	E1	E2
d) The mechanism has two steps: $S_N 1$	S _N 2	E1	E2				
e) Rate increases with better leaving grou	ups:		$S_N 1$	S _N 2	E1	E2	
f) Stereochemistry in inverted:	$S_N 1$	S _N 2	E1	E2			
g) Zaitsev product is formed	$S_N 1$	S _N 2	E1	E2			
h) Rate increases with concentration of the substrate:			$S_N 1$	S _N 2	E1	E2	
i) Rate increases in aprotic solvents $S_N 1$	S _N 2	E1	E2				

8H.4. Briefly explain why is ⁻OtBu sometimes favored over hydroxide as an elimination reagent.


8I. Determine if a set of conditions will be $S_N 2$, E2 or $S_N 1/E1$ and predict the products.


OCSL: 10.12 - 10.39

8I.1 Label the reaction most likely to take place (E1,SN1, E2, SN2 or a combination of these) under the following conditions. Draw the major product(s), include stereochemistry when relevant.


8I.2 Fill in the reagents in the following reactions.

8J. Predict the elimination products of dihalides

8J.1 Predict the major product of the following reaction.

