OCSL: Chapter 3: Acid-Base Reactions

VTOC: Acid-Base Reactions

UCSD: 7.1: The 'basic' idea of an acid-base reaction

7.2: Comparing the acidity and basicity of organic functional groups – the acidity constant

7.3: Structural effects on acidity and basicity, 7.4: More on resonance effects on acidity and basicity

Skills:

- 3A. Predict relative acidity and basicity of molecules or based on element effects, inductive effects, resonance effects and hybridization effects.
- 3B. Identify the acid and base in a Brønsted-Lowry acid-base reactions, draw the products and predict the direction based on pK_a values or structure.
- 3C. Identify the acid and base in a Lewis acid-base reaction, draw the products of a Lewis acid-base reaction.

Effects (in order of importance)	Trend in Acidity	Explanation
Element Effects the atom the H is <u>directly</u> attached to	F	Across a period, e- are more stable on electronegative atoms. Down a group e- are more stable the larger orbitals
Resonance Effects	The more resonance forms in the conjugate base, the stronger the acid	Resonance stabilizes the conjugate base.
Inductive Effects atoms indirectly attached to the H	For neighbors that are e- withdrawing: more electronegative, more acidic, more withdrawing groups, more acidic, closer to the H, more acidic.	e- withdrawing power of neighboring atoms stabilizes electrons on conjugate base.
Hybridization Effects	$sp^3 < sp^2 < sp$ More s-character, more acidic	orbitals with more s-character are more stable, as are e- in those orbitals