CHM 112 Chapter 16 Thermodynamics Study Guide

Remember from Chapter 5:

Thermodynamics deals with energy relationships in chemical reactions

Know the definitions of system, surroundings, exothermic process, endothermic process

 $\Delta H_{rxn}^0 = \sum n_p \Delta H_f^0$ (products) $-\sum n_r \Delta H_f^0$ (reactants) {same for ΔS_{rxn}^0 and ΔG_{rxn}^0 }

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$$

$$\Delta G_{rxn}^{\circ} = \Delta H_{rxn}^{\circ} - T\Delta S_{rxn}^{\circ}$$
 (Use off of 25°C)

$$\Delta G = \Delta G^{\circ} + RTln(Q)$$

$$\Delta G^{\circ} = -RTln(K)$$

16.1 and 2 By the end of this section, you will be able to:

- a) Distinguish between spontaneous and nonspontaneous processes
- b) Describe what happens in a spontaneous process
- c) Define entropy
- d) Explain the relationship between entropy and the number of microstates
- e) Predict the sign of the entropy change for chemical and physical processes
- f) A spontaneous process takes place without any outside intervention

A process that is spontaneous in one direction is non –spontaneous in the opposite direction Enthalpy and entropy are the two factors that determine thermodynamics favorability A system always tries to reach a state where its potential energy is the lowest.

You should be able to identify whether a process is spontaneous or not

- g) Entropy is the measure of the randomness or disorder in a system
 Entropy generally increases when... and you should be able to predict the entropy change for a reaction without doing any calculations...
 - i. Gases are formed from solids or liquids
 - ii. Liquids /solutions formed from solids
 - iii. Number of gas molecules in a reaction increases
 - iv. Increase in temperature
- h) All spontaneous processes are associated with an increase in the randomness of the system
- 1) Label each as having a + or $-\Delta S$ system.
- A) water freezing negative

B) ice melting positive

C) water evaporating positive

D) salt dissolving in water

positive

E) dry ice subliming positive

2) Place the following in order of increasing molar entropy at 298 K.

CO₂ C₃H₈ SO

SO<CO₂<C₃H8

16.3 By the end of this section, you will be able to:

- a) State and explain the second and third laws of thermodynamics
- b) Calculate entropy changes for phase transitions and chemical reactions under standard conditions
- c) Be able to calculate ΔS surroundings.
- d) $\Delta S_{rxn}^0 = \Sigma \# moles S_0(products) \Sigma \# moles S_0(reactants)$
- e) $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$
- f) $\Delta S_{surr} = -\frac{\Delta H}{T}$
- 3) Calculate ΔS°_{TXD} for the following reaction.

$$N_2H_4(I) + H_2(g) \rightarrow 2 NH_3(g)$$

= +113.7 J/K

4) Consider the following reaction at constant P. Use the information here to determine the value of ΔS_{surr} at 398 K. Predict whether or not this reaction will be spontaneous at this temperature.

$$4 \text{ NH}_3(g) + 3 \text{ O}_2(g) \rightarrow 2 \text{ N}_2(g) + 6 \text{ H}_2\text{O}(g)$$
 $\Delta H = -1267 \text{ kJ}$

= 3180 J/K

- 16.4 By the end of this section, you will be able to:
 - a) Define Gibbs free energy, and describe its relation to spontaneity
 - b) Calculate free energy change for a process using free energies of formation for its reactants and products (at 25 °C) $\Delta G^0_{rxn} = \Sigma \ \#moles \ \Delta G^0_f \ (products) \Sigma \ \#moles \ \Delta G^0_f \ (reactants)$ Get the ΔG^0_f values from the text.
 - c) Entropy, Enthalpy and free energy are all state functions
 - a. Know how to calculate ΔG^0 , ΔS^0 and ΔH^0 for reactions at 298 K (Off the charts!)
 - b. $\Delta H_{rxn}^0 = \sum n_p \Delta H_f^0$ (products) $-\sum n_r \Delta H_f^0$ (reactants) {same for ΔS_{rxn}^0 and ΔG_{rxn}^0 }
 - c. At 298 K, you can calculate ΔG directly off the charts.
 - d) Since G is a state function
 - a. Reversing a reaction changes sign of ΔG
 - b. When adding reactions, must add the ΔG 's
 - c. If a reaction is multiplied by a number, then ΔG is also multiplied by the same number
 - e) We can use Hess's Law to calculate ΔG for a reaction.
 - f) Off of 25 °C, you cannot calculate ΔG directly from the charts. You must calculate ΔH and ΔS and plug in T to get ΔG . $\Delta G = \Delta H T \Delta S$
 - g) Under non-standard conditions, $\Delta G = \Delta G^0 + RT \ln Q$ (where Q is the reaction quotient)

h) Free energy and equilibrium constant are related as ΔG° = - RT lnK_{eq}

a. If
$$\Delta G^{\circ} < 0$$
, $K_{eq} > 1$

If
$$\Delta G^{\circ} > 0$$
, $K_{eq} < 1$

If
$$\Delta G^{\circ} = 0$$
, $K_{eq} = 1$

5) Above what temperature does the following reaction become nonspontaneous?

$$3 H_2 + N_2 \rightarrow 2NH_3$$
. $\Delta H = -93 kJ$; $\Delta S = -198 J/K$

T>470 K

6. Estimate ΔG°_{TXN} for the following reaction at 500.0 K. (Calculate ΔH° and ΔS°)

$$CH_2O(g) + 2 H_2(g) \rightarrow CH_4(g) + H_2O(g)$$

$$\Delta$$
 G° = -155 kJ

7. Calculate the ΔG°_{TXN} at 25°C.

$$2 \text{ H}_2S(g) + 3 \text{ O}_2(g) \rightarrow 2 \text{ SO}_2(g) + 2 \text{ H}_2O(g)$$

$\Delta G^{\circ} = -990.6 \text{ kJ}$

8. (A) For the reaction: $2NO(g) + O_2(g) \rightleftharpoons 2 NO_2(g)$: What is ΔG°_{rxn} and K at $25^{\circ}C$?

$$\Delta G^{\circ} = -72.6 \text{ kJ}$$
 K = 5.3 x 10¹²

(B) What is the value of ΔG if P NO(g) = 10.0 atm, P O₂(g) = 10.0 atm, P NO₂(g) = 0.0.100 atm? Will the reaction be more or less spontaneous under these conditions?

Δ G = -101 kJ

- 10. Label each as True or False
- A) There is a "heat tax" for every energy transaction.
- B) A spontaneous reaction is always a fast reaction.
- C) The entropy of a system always decreases for a spontaneous process.
- D) Perpetual motion machines are a possibility in the near future.