Chapter 15	Extra Credit	Name: <u>Key</u>	_
------------	--------------	------------------	---

1. Write the ionic equation for dissolution and the solubility product (K_{sp}) expression for each of the following slightly soluble ionic compounds:

(a) $PbCl_2$ $PbCl_2$ (s) \rightleftharpoons Pb^{2+} (aq) + 2 Cl^- (aq) Ksp = $[Pb^{2+}][Cl^-]^2$

(b) Ag₂S

(c) Sr₃(PO₄)₂

2. Use solubility products and predict which of the following salts is the most soluble, in terms of moles per liter, in pure water: CaF₂, Hg₂Cl₂, Pbl₂, or Sn(OH)₂.

CaF ₂	Ksp = 4.0×10^{-11}	
Hg_2CI_2	$Ksp = 1.1 \times 10^{-18}$	
PbI ₂	$Ksp = 1.4 \times 10^{-8}$	
Sn(OH) ₂	$Ksp = 3 \times 10^{-27}$	
Each of these break into a total of 3 ions (even mercury (I) chloride) so the Ksp's can be directly compared,		

Sn(OH)₂ is less soluble than $Hg_2Cl_2 < CaF_2 < PbI_2$

3. Calculate the molar solubility of each. Look up Ksp in the appendix.

(a) PbI_2 Ksp = 1.4 x 10⁻⁸

X = 0.0015 M

(b) Ag₂SO₄

Ksp = 1.2 x 10⁻⁵

X = 0.014 M

4. Given the molar solubility, calculate K_{sp} for each of the slightly soluble solids indicated:

(a) AgBr: $x = 5.7 \times 10^{-7} M$, Ksp = x^2

Ksp = 3.2×10^{-13}

(b) PbF₂: $x = 2.1 \times 10^{-3} M$, Ksp = $x(2x)^2$ Ksp = 3.7×10^{-8}

5. The <u>Handbook of Chemistry and Physics</u> gives solubilities of the following compounds in grams per 100 mL of solution. Calculate the solubility product (Ksp) for each.

```
(a) BaSiF<sub>6</sub>, 0.026 g/100 mL (contains SiF<sub>6</sub><sup>2-</sup>) x = 0.00093M Ksp = 8.7 x 10^{-7}
```

```
(b) Ce(IO<sub>3</sub>)<sub>4</sub>, 1.5 \times 10^{-2} g/100 mL MM Ce(IO<sub>3</sub>)<sub>4</sub> = 840 g/mole
```

X = 0.00018 M Ksp = $[Ce^{4+}][IO_3^{-}]^4$ = x(4x)⁴ = 256 (x)⁵

Ksp = 4.8×10^{-17}

6. Calculate the molar solubility of:

(a) AgCl(s) in pure water. Ksp = 1.6×10^{-10}

 $x = 1.3 \times 10^{-5} M$

AgCl(s) in 0.010 M NaCl

 $x = 1.6 \times 10^{-8} M$

How does the solubility change when a common ion is added? The solubility decreases.

(b) Calculate the molar solubility of: $CaF_2(s)$ in 0.0125 *M* KF Ksp = $4.0 \times 10^{-11} = [Ca^{2+}][F^{-}]^2 = x(.0125 + 2x)^2 = x(.0125)^2$

x = 2.6 x 10⁻⁷ M

(c) Calculate the molar solubility of: Ni(OH)₂(s) in a solution with pH of 12.00. Ksp = 1.6×10^{-16}

 $[OH^{-}] = 10^{-2}$ Ksp = $[Ni^{2+}][OH^{-}]^2 = (x)(.01 + 2x)^2 = x(.01)^2$ x = 1.6 x 10⁻¹² M

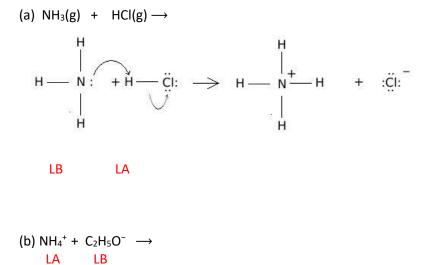
7. Will a precipitate form given the concentrations indicated? (See appendix for K_{sp} values.)

(a) CaCO₃: $[Ca^{2+}] = 0.0020 M$, $[CO_3^{2-}] = 0.010M$ Ksp = 8.7 x 10⁻⁹

 $Q = 2.0 \times 10^{-5}$ Q>Ksp, so a precipitate will form.

(b) Mn(OH)₂: $[Mn^{2+}] = 1.0 \times 10^{-4} M$, $[OH^{-}] = 1.0 \times 10^{-5} M$

 $Q = 1.0 \times 10^{-14}$ Q<Ksp, a precipitate will not form.


8. Draw the Lewis Structure for each and Label the Lewis Acids and the Lewis Bases (reactants only)

(a) $BF_3 + F^- \rightarrow BF_4^-$ LA LB

(b) $AI(OH)_3 + OH^- \rightarrow AI(OH)_4^-$

LA LB

Draw the Lewis Structure for each and Label the Lewis Acids and the Lewis Bases (reactants only) and predict the Products.

9. A volume of .080 L of 2.0 x 10^{-3} M Ba(NO₃)₂ (aq) is added to .020 L of 5.0 x 10^{-3} M Li₂SO₄ (aq). Will a precipitate form? For: BaSO₄: Ksp = 2.3 x 10^{-8} Q = 1.6 x 10^{-6} . A precipitate will form.