CHM 112 Chapter 14 Extra Credit Part 2

Name: _____Key____

Look up the values of $K_{a,\,or}\,K_b$ in your book.

- 1. Calculate the concentration of all species as well as the pH for a 0.150 M solution of $H_2CO_3(aq)$. pH = 3.60
- 2. Calculate the pH of a 0.0100 M solution of sulfurous acid. pH = 2.15 (you will need to do the quadratic)
- 3. Using an ICE table, calculate the pH of a solution that is 0.175 M in NaNO₂(aq) and 0.145 M in HNO₂(aq). pH = 3.42
- 4. Use the Henderson equation to calculate the pH of the 0.175 M in NaNO₂(aq) and 0.145 M in HNO₂(aq). Compare your answer to that obtained with a traditional ICE table. pH = 3.42
- (A) Which of the following combinations will give a buffered solution that has a pH of about 5? Explain clearly the reason for your choice.
 - a) NH₃ mixed with NH₄Cl (K_b for NH₃= 1.8 x10⁻⁵) or b) C₅H₅N mixed with C₅H₅NHCl (K_b for C₅H₅N = 1.7x10⁻⁹)

pH = pKa

(B) What ratio of the concentrations of the conjugate acid/base pair from Part A will be needed to form a buffer solution with a pH of 6.2? Acid/Base = .11 or Base/Acid = 9.3

- 6. Calculate the pH of a solution made by mixing 50.0 mL of 0.10 M benzoic acid and 100. mL of 0.15 M potassium benzoate. pH = 4.67
- 7. Explain how our blood buffer system works. Use the reactions of $H_2PO_4^-/HPO_4^-$.
- Calculate the pH of a 1.00 L solution that is 0.250 M in trimethylamine and 0.350 M in trimethylammonium chloride. pH = 9.66
- 9. Calculate the pH after 0.100 moles of NaOH are added to the solution in 8. pH = 9.96
- 10. A solution contains 0.400 moles acetic acid and 0.600 moles potassium acetate in 1.50 L of solution.
 - a) Calculate the pH of this solution. pH = 4.92
 - b) What will be the pH of the solution after 0.100 mol of NaOH(s) is added to the solution in (a) pH = 5.11
 - c) What will be the pH of the solution after 0.100 mol of HCl(g) is added to the solution in (a) pH = 4.74
- 11. 40.0 ml of 0.100 M HCl is titrated with 0.100 M KOH. Calculate the pH of the solution at each of the following steps in the titration.
 - a) Initially before any KOH has been added. pH = 1
 - b) 20.0 ml of KOH has been added pH = 1.48
 - c) 39.0 ml of KOH has been added pH = 2.90
 - d) 40.0 ml of KOH has been added pH = 7
 - e) Sketch the titration curve

- 12. Consider the titration of 40.0 mL of 0.500 M NH_3 with 1.00 M HCl
 - a) What is the initial pH of the $NH_3(aq)$? pH = 11.73
 - b) What is the pH halfway to the equivalence point? pH = pKa = 9.25
 - c) What is the volume of HCl needed to reach the equivalence point? 20.0 mL
 - d) What is the pH at the equivalence point? pH = 4.86
 - e) Sketch the titration curve. Label the point(s) where there is a A) a weak base B) weak acid C) Buffer D) Strong acid in excess,
- 13. A solution is 0.155 M in Na₂HPO₄ and 0.200 M in NaH₂PO₄. What is the pH of this solution? pH = 7.10