Name:

- 1. For each of the following reactions, write down the rate of the reaction in terms of the appearance of products and disappearance of reactants
 - a) $2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$

Rate = $-1/2 \Delta [N_2O_5] / \Delta t = \frac{1}{2} \Delta [NO_2] / \Delta t = \Delta [O_2] / \Delta t$

- b) $CH_3Cl(g) + 3 Cl_{2(g)} \rightarrow CCl_4(g) + 3 HCl(g)$
- 2. Given the following balanced equation, determine the rate of reaction with respect to [O₂]. $2 O_3(g) \rightarrow 3 O_2(g)$
- 3. Given the following balanced equation, determine the rate of reaction with respect to N₂O₅. If the rate of NO₂ 0.015 M/s, what is the rate of reaction of N₂O₅? $2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g)$

Rate = (-)0.0075 M/sec

4. What is the **overall order** of the following reaction, given the rate law?

 $2 X + 3 Y \rightarrow 2 Z$ Rate = k[X]¹[Y]²

What will happen to the Rate of the concentration of Y is doubled?

5. Determine the rate law and the value of k for the following reaction using the data provided.

$$S_2O_8^{2-}(aq) + 3 |^{-}(aq) \rightarrow 2 SO_4^{2-}(g) + |_3^{-}(aq)$$

Run	[S ₂ O ₈ 2 ⁻] _i (M)	[I⁻] _i (M)	Initial Rate (M/s)
1	0.30	0.42	4.54
2	0.44	0.42	6.65
3	0.44	0.21	3.33

Rate = 36 $1/Ms [S_2O_8^{2-}][I^-]$

Include the correct units for k!

6. Determine the rate law and the value of k for the following reaction using the data provided.

 $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$

Run	[NO] _i (M)	[O ₂] _i (M)	Initial Rate (M/s)
1	0.030	0.0055	8.55 × 10-3
2	0.030	0.0110	1.71 × 10-2
3	0.060	0.0055	3.42 × 10 ⁻²

rate=1700/M²s [NO]²[O₂]

7. For a particular first order reaction, it takes 120.0 min for the concentration of the reactant to drop to 15% of its initial value. What is the rate constant for this reaction?

K=.0158 1/min

8. How many half-lives are required for the concentration of reactant to decrease to 25% of its original value? (Assume first order kinetics.)

2

9. Fluorine-18 undergoes positron emission with a half-life of 1.10 × 10² minutes. If a patient is given a 248 mg dose for a PET scan, how long will it take for the amount of fluorine-18 to drop to 83 mg? (Assume that none of the fluorine is excreted from the body.)

t = 174 min

10. The second-order decomposition of HI has a rate constant of 1.80×10^{-3} M⁻¹s⁻¹. How much HI remains after 27.3 s if the initial concentration of HI is 4.78 M?

[A]t = 3.87 M

11. The first-order rearrangement of CH₃NC is measured to have a rate constant of 3.61×10^{-15} s⁻¹ at 298 K and a rate constant of 8.66×10^{-7} s⁻¹ at 425 K. Determine the activation energy for this reaction.

E_a = 160 kJ/mole

12. The decomposition of NOCI has k= 9.3 x 10⁻⁵ M⁻¹s⁻¹ at 100. °C and an Activation Energy of 98.9 Kj/mole. What is the rate constant at 130 °C.

k=.0009988 1/Ms

13. Consider the reaction: $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

The reaction is first order in CO and 3/2 order in Cl₂

a) Write down the rate law for this reaction.

Rate = $k[CO][Cl_2]^{3/2}$

b) What will be the rate of the reaction when [CO] = 0.025 M and [Cl₂] = 0.015 M, given that the rate constant is $11 \text{ M}^{-3/2}\text{s}^{-1}$

Rate = 0.000505 M/s

14. The decomposition of NOBr follows second order kinetics. The rate constant is found to be 0.556 M⁻¹s⁻¹. If the initial concentration of NOBr in the container is 0.25 M, how long will it take for the concentration to decrease to 0.025 M?

65 sec

What is the half-life of the decomposition when the initial reactant concentration is 0.25 M?

t ½ = 7.19 sec

15. Using the diagram above:(A) add the axes

(B) label the activation energies

(C) How many elementary steps are there?

2 (D) Which elementary step is limiting?

first

(E) What might happen if a catalyst is added. Show this effect on the diagram.

16. A possible mechanism for the overall reaction $Br_2(g) + NO(g) \rightarrow 2 NOBr(g)$

is

Step 1: NO (g) + Br₂ (g)
$$\rightleftharpoons$$
 NO Br₂ (g) (fast)
 k_{-1}

 $\begin{array}{rl} k_2 \\ \text{Step 2: NO Br}_2 \left(g\right) \ + \ \text{NO} \left(g\right) \ \rightarrow \ 2\text{NOBr} \end{array} \tag{slow}$

The reaction is experimentally determined to be second order in NO and first order in Br₂

a) Write down the experimentally determined rate law.

Rate = $k[NO]^{2}[Br_{2}]$

b) Is the mechanism consistent with the observed rate law?

yes

17. Suppose a reaction occurs with the following mechanism.

Step 1	$2 A \rightleftharpoons A_2$	fast, equilibrium
Step 2	$A_2 + E(g) \rightarrow B + C$	slow

- (A) What is the overall reaction?
- (B) What are the intermediates in the mechanism?
- (C) What is the molecularity of each step?
- (D) Which is the rate determining step?
- (E) What is the rate law predicted by this mechanism?

Rate = $k[A]^2[E]$