d) He

	•	ers 7 and 8: Chemical Bonding: Lewi Credit Worksheet	s Th	eory, Molecular shapes and hybridizatio	n Name:		
1.		Write the Lewis symbols of the followi	ng				
	a)	P ³⁻	b)	CI			

c) Si

2. Predict which of the following compounds are ionic and which are covalent, based on the location of their constituent atoms in the periodic table:

Identify the more polar bond in each of the following pairs of bonds: 3.

- 4. What will be the geometry about each central atom in the following molecules? Draw a sketch of the molecule. The skeletal structure for each molecule is listed in parentheses.
 - a) C₂H₂ (HCCH)

b) N_2H_4 (H_2NNH_2)

c) CH_3NH_2 (H_3CNH_2)

d) CF₃COOH

(both O atoms are attached to the second C, H atom is attached to O)

- 5. Write resonance forms that describe the distribution of electrons in each of these molecules or ions.
- (a) selenium dioxide, OSeO
- (b) nitric acid, HNO₃ (N is bonded to an OH group and two O atoms)
- (c) benzene, C₆H₆:

6. Fill in the Table:

Molecule	Lewis Structure	# of Electron groups on central atom	Electron geometry	Molecular geometry	Expected Bond angle (s)	Hybridization	Polar? Yes or No
COCl ₂							
NH₃							
CH ₂ F ₂							
HCN							
BrF ₄ ¯							
OF ₂							

- 11. Using the tabulated bond energies, determine the approximate enthalpy change for each of the following reactions:
- (b) $C_2H_4(g)+3O_2(g) \rightarrow 2C_{O_2}(g)+2H_2O(g)$

- 12. Which compound in each of the following pairs has the larger lattice energy? Note: Ba²⁺ and K⁺ have similar radii; S²⁻ and Cl⁻ have similar radii. Explain your choices.
- (a) K₂O or Na₂O

- (b) K₂S or BaS
- 13. Draw all possible resonance Lewis structures for NO₂⁺. Use Formal Charges to identify the best Lewis structure amongst them.

14. Methionine, CH₃SCH₂CH₂CH(NH₂)CO₂H, is an amino acid found in proteins. Draw a Lewis structure of this compound. What is the hybridization type of each carbon, oxygen, the nitrogen, and the sulfur?