Chapter 5	Thermochemistry	Extra Credit	Name:
1. Label the f	ollowing reactions/proce	sses as endothermic or exothermic:	
(A) Ice melts	at 0 °C.		
(B) When an i	onic solid is added to wa	ter, the temperature of the water decr	eases.
(C) Gasoline is	s burned in a car engine.		
(D) When HNO	O_3 (aq) reacts with NaOH	(aq), the temperature of the resulting	solution increases
2. Carry out th	ne following conversions:	:	
(A) 145 J to ca	ıl		
(B) 210 kcal to	o J		
(C) 95 Cal to k	:J		
3. A system do	oes 175 J of work and los	es 45 J of heat. What is the change in in	nternal energy of this system?
		ories, must be added to a 275.0 g iron b to its melting temperature of 1535°C?	plock with a specific heat of 0.449 J/g °C to

5.	How much would the temperature of 275 g of water increase if 36.5 kJ of heat were added?	
6.	A piece of unknown substance weighs 44.7 g and requires 2110 J to increase its temperature from 23.2 °C to 89.6 °	C.
	(A) What is the specific heat of the substance?	
	(D) If it is one of the substances found in the table of specific heats in Chapter E, what is the identity of the	
	(B) If it is one of the substances found in the table of specific heats in Chapter 5, what is the identity of the substance.	
_		
7.	How many grams of water can be heated form 20.0 °C to 45.0 °C by the heat released from 215.0 g of Iron that confrom 95.0 °C to 25.0 °C? The specific heat of Iron is 0.45 J/g °C.	OIS

11. Consider the reaction

 $N_2 + 3H_2 \rightarrow 2NH_3$ $\Delta H^0_{rxn} = -92 \text{ kJ}$

$$\Delta H_{rxn}^0 = -92 \text{ kJ}$$

How many kilojoules are released when 50.0 g of NH₃ are formed?

12. Calculate ΔH° for the process $Zn(s) + S(s) + 2O_2(g) \rightarrow ZnSO_4(s)$

from the following information:

$$Zn(s)+S(s) \rightarrow ZnS(s)$$

$$\Delta H^{\circ}$$
=-206.0kJ

$$ZnS(s)+2O_2(g) \longrightarrow ZnSO_4(s)$$

13. Calculate ΔH for the process $Hg_2Cl_2(s) \rightarrow 2Hg(l) + Cl_2(g)$

from the following information:

$$Hg(I)+Cl_2(g)\longrightarrow HgCl_2(s)$$

$$Hg(I)+HgCl_2(s)\longrightarrow Hg_2Cl_2(s)$$

$$\Delta H=-41.2kJ$$

(A)
$$Si(s) + 2F_2(g) \rightarrow SiF_4(g)$$

(B) 2C(s) +
$$2H_2(g) + O_2(g) \rightarrow CH_3CO_2H(I)$$

(C)
$$CH_4(g) + N_2(g) \rightarrow HCN(g) + NH_3(g)$$

(D)
$$CS_2(g) + 3CI_2(g) \rightarrow CCI_4(g) + S_2CI_2(g)$$