| | Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding problems. | |----|---| | | This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. Topics and Space for Notes | | 1. | State the postulates of Dalton's atomic theory | | | Explain the laws of definite and multiple proportions | | | Summarize and interpret the results of the experiments of Thomson, Millikan, and Rutherford | | | Describe the three subatomic particles that compose atoms | | | Define isotopes and give examples for several elements | | 2. | (A) Define the atomic mass unit and average atomic mass | | | (B) Understand average atomic mass and isotopic abundance | | | | (B) Represent the bonding arrangement of atoms within molecules using structural formulas Worksheet and Study Guide Chapter 1 | 3. | (A) State the pe | riodic law and explain th | e organization of eleme | nts in the periodic table |) | |---|--------------------|---------------------------|---------------------------|----------------------------|----------------| | (B) | Predict the gene | ral properties of elemen | ts based on their locatio | on within the periodic tab | ole | | (C) | ldentify metals, r | nonmetals, and metalloid | ds by their properties an | d/or location on the per | iodic table | | 4. | (A) Define ionic a | and molecular (covalent |) compounds | | | | (B) | Predict the type | of compound formed fro | m elements based on th | neir location within the p | periodic table | | (C) | Determine formu | ılas for simple ionic com | pounds | | | | (D) | Derive names fo | r common types of inorg | ganic compounds using | a systematic approach | | | Pro | oblems: | | | | | | 1. Fill in the table Write and interpret symbols that depict the atomic number, mass number, and charge of an atom or ion | | | | | | | - | mbol of isotope | Name of element | # of Protons | # of neutrons | # of electrons | | ¹³⁸ [| За | | | | | | | | | 13 | 12 | 13 | Silver | ²⁰ Ne | 19.992439 | 90.92 | | |-------------------|---|------------------------|---| | ²¹ Ne | 20.993845 | 0.26 | | | ²² Ne | 21.991384 | 8.82 | | | | | | | | | | | | | 3. (A) Syn | nbolize the composi | ition of molecules | using molecular formulas and empirical formulas | | Determine | the empirical formula | as for the following o | compounds: | | (a) acetic | acid, $C_2H_4O_2$ | | | | (b) citric a | cid, C ₆ H ₈ O ₇ | | | | (c) hydrazi | ine, N ₂ H ₄ | | | | (d) nicotine | e, C ₁₀ H ₁₄ N ₂ | | | | (e) butane | , C ₄ H ₁₀ | | | | | | | | | | | | | | 4. Name 1 | he following | | | | MgS | | | Co_2S_3 | | FeCl ₂ | | | LiBr | | LiH | | | Cs ₃ N | | K ₂ O | | | | | 5. Write | formulas for: | | | | Calcium ch | loride | | Zinc sulfide | | Mercury (I |) iodide | | silver hydride | | Sodium flu | oride | | Barium selenide | | | | | | % abundance 2. Using the following data, calculate the average atomic mass of Neon. mass in amu Isotope | 6. Name the following. | Write the formulas for the following. | | | |--|---|--|--| | (A) Pb(SO ₃) ₂ | (A) potassium permanganate | | | | (B) Ag ₂ CO ₃ | (B) barium hydroxide | | | | (C) Al ₂ S ₃ | (C) hypochlorous acid | | | | (D) H ₃ PO ₄ (aq) | (D) calcium iodate | | | | (E) Cr(C ₂ H ₃ O ₂) ₃ | (E) iron (III) hydrogen carbonate | | | | (F) NH ₄ Cl | (F) mercury (II) cyanide | | | | (G) CuHPO ₄ | (G) cesium nitride | | | | (H) NaNO ₃ | (H) nickel (II) chromate | | | | (I) P ₂ S ₅ | (I) Carbonic acid | | | | | | | |