5.	Complete the	missing entries	in the following	g table. The first	row is filled in for you.
----	--------------	-----------------	------------------	--------------------	---------------------------

Symbol for isotope	Atomic number	Mass number	Number of neutrons	Number of electrons	Net charge	Name of element	Metal, nonmetal or metalloid
⁶⁶ Zn ²⁺	30	66	36	28	2+	zinc	metal
¹²⁷ -	53	127	74	54	1-	iodine	nonmetal
		208		78		lead	
	15	31			3-		
		1	0	1			

6. Calculate the atomic mass of gallium if gallium has 2 naturally occurring isotopes with the following masses and natural abundances:

Ga-69	68.9256 amu	60.11%
Ga-71	70.9247 amu	39.89%
. Istan		

69.72 amu/atom

7. Silver has two naturally isotopes and has an atomic mass of 107.868 amu. One isotope is Ag-109 isotope (108.905 amu) and has a natural abundance of 48.16%. What is the mass in amu of the other isotope?

106.90 amu/atom

10. Fill in the Table.

Formula	Name	Name	Formula
FeO	Iron (II) oxide	hydrocyanic acid	HCN (aq)
NH ₄ NO ₃	Ammonium nitrate	barium sulfate	BaSO ₄
Pb(CO ₃) ₂	Lead (IV) carbonate	Potassium acetate	KC ₂ H ₃ O ₂
HNO _{3 (aq)}	Nitric acid	Lithium hydride	LiH
Na ₂ SO ₃	Sodium sulfite	potassium dihydrogenphosphate	KH ₂ PO ₄